Wednesday, November 27, 2019
Detection of Parkinson Decease Using Computational Intelligence Method
Detection of Parkinson D is ease Using Computational Intelligence Methods Elcin Huseyn 1 , Babek Guirimov 2 1 Research Laboratory of Intelligent Control and Decision Making Systems in Industry and Economics, Azerbaijan State Oil and Industry University, 20 Azadlig Ave., Baku, AZ1010, Azerbaijan, [emailprotected] asoiu.edu.az 2 Research Laboratory of Intelligent Control and Decision Making Systems in Industry and Economics, Azerbaijan State Oil and Industry University, 20 Azadlig Ave., Baku, AZ1010, Azerbaijan, [emailprotected] Abstract. Parkinson's disease is a neuro-degenerative movement disorder that causes voice/speech, and behavioral impairments. As a dysfunctional disease, it can be detected by a set of specific symptoms of patients. Such symptoms include both voice/speech and/or physical behavior/movement charac te ris - tics. For better detection both sets of characteristics are used in our research. In this study, as a diagnostic model, we use a system based on multiple-layer (deep) feed-forward neural networks. The networks are trained with Differential Evolution training algorithm using in parallel a pair of data sets (training and validation sets) to avoid overfitting and improve model's generalization ability (performance on untrained data). The applied DE algorithm has allowed avoiding local minima of error function during the training. A third data set is used for testing trained network performance. According to the obtained results, this method demonstrated better results than other existing approaches. Keywords: Parkinson's disease , Artificial Neural Network, Differential Evolution Optimization, Computational Intelligence Introduction Parkinson's disease is a neuro-degenerative movement disorder that causes voice/speech, and behavioral impairments . The disease causes partial or full loss in motor reflexes, speech, behavior, mental processing, and other vital functions [1] . The early detection of disease symptoms is vitally important in order to prevent further disease complications. Using recorded data including voice/speech and physical behavior /movement characteristics from healthy and sick people it is possible to create models, which would allow fast noninvasive diagnostic of the disease. Appropriate models include Support Vector Machines, Rule Based Systems, Artificial Neural Networks and others. Most existing approaches utilize only voice/speech data [2]. In our research to improve detection accuracy, we use also physical behavior/movement characteristics obtained from different subjects. Among all possible methods to create required model, we have chosen multi-layer deep feed-forward neural networks for a number of reasons. First, because they are indeed universal approximators and can be used to reveal any complex relationships in large data sets . Second, because recent developments in the theory and technology have significantly increased efficiency of neural networks. For instance, increased processing power and parallel processing abilities of modern computers allow efficient use of n ew evolutionary training approaches to effectively battle such bottleneck of large multi-layer neural networks as time-consuming parameter adaptation . The global parameter search , which avoids local minima trapping, is now much faster than ever . Third, because, neuron models are not now required to be constrained by smooth differentiable transfer functions, connection weights by simple numerical values, and network arch itecture for large input/output systems by single hidden layer of neurons. Method The used detection model is multi-layer feed-forward neural network with non-linear transfer function based neurons in hidden layers and linear neurons in input and output layers. Given particular values for the neural network parameters, and given values for the inputs, a neural network generates a value for each output: , The operation of an L -layer feed-forward perceptron neural network at each layer l can be described by the following equation: , where is the activation function used at network layer l . In the vector form this can be written more compactly: Or, based on only the network activations as: Matrix will denote weights connecting all neurons of layer with all neurons of layer . Thus for an -layered NN set will contain matrixes . is the weight of connection to neuron at layer from neuron at the previous layer , is the threshold parameter of neuron at layer The total number of connection weights and thresholds (i.e. number of elements in the set W ) for a feed-forward neural network is . The evolutionary algorithm used for training is Differential Evolution [ 5 ] , which is one of the fastest population based algorithms for global search in multi-dimensional v ector space.
Sunday, November 24, 2019
Ben Franklin BiographyCritique essays
Ben Franklin BiographyCritique essays In his many careers as a printer, moralist, essayist, civic leader, scientist, inventor, statesman, diplomat, and philosopher, for later generations of Americans he became both a spokesman and a model for the national character. He was born in Boston, Massachusetts on Jan. 17, 1706, into a religious Puritan household. His father, Josiah, was a candlemaker and a skillful mechanic. His mother, Abiah Bens parents raised thirteen childrenthe survivors of Josiahs seventeen children by two wives (#1). Franklin left school at ten years old when he was pressed into his father's trade. At twelve Ben was apprenticed to his half brother James, a printer of The New England Courant. He generally absorbed the values and philosophy of the English Enlightenment. At the age of 16, Franklin wrote some pieces for the Courant signed "Silence Dogood," in which he parodied the Boston authorities and society (#3). At one point James Franklin was imprisoned for his liberal statements, and Benjamin carried on the paper himself. Having thus learned to resist oppression, Benjamin refused to suffer his brother's own domineering qualities and in 1723 ran away to Philadelphia (#1). Soon Franklin found a job as a printer. After a year he went to England, where he became a master printer, sowed some wild oats, amazed the locals with his swimming feats, and lived among inspiring writers of London. By 1726 Franklin was tiring of London (#1). He considered becoming an itinerant teacher of swimming, but when a Quaker merchant by the name of Thomas Denham offered him a clerkship in his store in Philadelphia, he decided to return home (#5). Returning to Philadelphia in 1726, he soon owned a newspaper, the Pennsylvania Gazette, and began to print Poor Richard's Almanac. In the Pennsylvania Gazette, a citizen asked editor Franklin the following question: "If A found out that his neighbor B was sleeping with his wife, was he justified in telling B's w...
Thursday, November 21, 2019
Ownership Structure and Financial Performance Essay
Ownership Structure and Financial Performance - Essay Example The paper talks about the measurement of the ownership structures with respect to financial performances and finally generates an understanding of US and UK based companies by distinguishing them on the basis of ownership identities and level of concentration. The development in corporate governance practices and regulations pertaining to disclosures of ownership are also discussed. Various measures of financial performance are highlighted and discussed in relation with the research topic. It has been concluded that ownership structure has an impact on financial performances, but with varying interests as there are other internal and external factors that may play a vital role in reducing or increasing productivity. It has been identified in this report that the relationship between ownership structure and financial performance of firms is not observed to have a similar trend in different countries. Corporate governance comprises of control mechanisms through which corporations are governed and directed to perform their duties effectively. The ownership structure needs to be directed by corporate governance because lack of transparency of ownership structure may have an adverse impact on financial performances. In other words, it can be said that ownership structure shows the types and compositions of different shareholders that have an influence on companyââ¬â¢s key decisions areas so they need to be administered by corporate governance in order to carry out their processes in ethical and transparent manner. The purpose of this paper is to generate an understanding of the relationship of ownership structure and companyââ¬â¢s performance. In this regard, investigation of UK and United companies is carried out in this paper.
Subscribe to:
Posts (Atom)